Inverse in Passamaquoddy as the spell-out of Feature Gluttony

Tanya Bondarenko (MIT)
tbond@mit.edu

LSA 2021, January 9th
Question: What mechanism is responsible for *hierarchy effects*?

- Example of a hierarchy effect from German copula construction:

 (1) Du bist Martin. \(\checkmark \ 2 > 3 \)
 you.nom be.2sg Martin.nom
 ‘You are Martin.’

 (2) *? Martin ist du. * 3 > 2
 Martin.nom be.3sg you.nom

 (Coon & Keine 2020: ex. (51), p. 31)

- Coon & Keine 2020: Feature Gluttony — a configuration with *too much Agree*— is the mechanism which creates hierarchy effects.

- E.g., in (2), unlike in (1), the probe agrees with both DPs, creating FG. This leads to a morphological problem.
Coon & Keine (2020): a general mechanism for creating hierarchy effects that covers Person Case Constraint (PCC) effects, dative-nominative constructions, and copula constructions.

This poster: hierarchy effects of direct/inverse agreement in Passamaquoddy (Algonquian) can be viewed as a result of FG as well.

Main take-away points:

★ Inverse marker -oku in Passamaquoddy is the spell-out of a feature glutony created by the Voice head.

★ When a probe is sandwiched between two DPs, as Voice is, we get object agreement in the absence of FG.

★ Passamaquoddy’s Voice probe is searching for a 3rd person obviative DP (maybe: prototypical object?).
Passamaquoddy: an Algonquian language which has preserved the Proto-Algonquian patterns (Oxford 2014).

Verbal template of Passamaquoddy (simplified):

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Verb Stem</th>
<th>Theme sign</th>
<th>Neg</th>
<th>Central</th>
<th>Mode/Tense</th>
<th>Peripheral</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>tokom</td>
<td>a</td>
<td>w</td>
<td>inu</td>
<td>pon</td>
<td>ik</td>
</tr>
<tr>
<td>1</td>
<td>hit.TA</td>
<td>3</td>
<td>NEG</td>
<td>1PL</td>
<td>PST</td>
<td>3PL</td>
</tr>
<tr>
<td>?</td>
<td>V</td>
<td>Voice</td>
<td>Neg</td>
<td>T</td>
<td>T</td>
<td>C</td>
</tr>
<tr>
<td>π</td>
<td></td>
<td>π</td>
<td># (+π)</td>
<td></td>
<td># (+π)</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: 1Pl.EX Subject, 3PL Object: ‘We (excl.) hit them.’

Direct/Inverse agreement = theme sign agreement: shows only π-agreement and can be viewed descriptively as object agreement (Oxford 2019) + a default form (“inverse”), the choice between which is determined by a hierarchy.
There are two main clause types in Passamaquoddy (“orders”) — Independent and Conjunct, and the hierarchy depends on it:

(3) **Person hierarchy in Independent**
SAP (speech act participants: 1,2) >3 (animate proximate) >4 (animate obviative)

(4) **Person hierarchy in Conjunct**
SAP (speech act participants: 1,2) and 3 (animate proximate) >4 (animate obviative)

- If the subject outranks the object on the relevant hierarchy, we see agreement with the object in person in the Theme sign slot.
- If the object outranks the subject, the default “inverse” marker *oku/oq* is inserted.
Illustration:

(5) ’-tokom-a-l
 3-hit.TA.Ind-3-obv
 ‘(S)he (prox) hits him/her (obv).’

(6) ’-tokom-oku-l
 3-hit.TA.Ind-inv-obv
 ‘(S)he (obv) hits him/her (prox).’

- In (5) the subject is 3rd person proximate and the object is 3rd person obviative, so the subject “outranks” the object on the hierarchy ⇒ object agreement.
- In (6) the subject is 3rd person obviative and the object is 3rd person proximate, so the object “outranks” the subject on the hierarchy ⇒ inverse marker.
Person and number features are arranged in feature geometries (Harley & Ritter 2002, Béjar 2003, a.o.)

Probes consist of hierarchically organized segments reflecting their requirements:
- The non-lowest segments of the probe = the features that the probe will *interact* with.
- The lowest segment of the probe = the feature that the probe is *satisfied* by.

Illustration: German T probe from the copula construction

\[
T \left[\left[\begin{array}{c}
\text{uPERS} \\
\text{uPART}
\end{array} \right]_{\pi} \rightarrow \left[\begin{array}{c}
\text{uNUM} \\
\text{uPL}
\end{array} \right]_{\#} \right]
\]

E.g., the person probe will interact & agree with all DPs that have a *pers* feature, but will be satisfied only by participant DPs.
Feature gluttony (FG) is a situation when a single probe P has entered Agree with more than one DP and thus copied more than one feature set from them.

- The probe will agree with the closest DP which matches *some* of its segments (i.e., overlap between the unchecked segments on the probe and the segments of the goal is sufficient).

- The feature copying step is *coarse* in the sense that the entire feature geometry of a DP is copied, even if only a segment of it undergoes Agree.

- If there are remaining segments that are not matched, the probe is not satisfied (Deal 2015), and *the remaining segments* of the probe continue probing.
Illustration:

(8) Du bist Martin. \(\checkmark 2 > 3 \)

‘You are Martin.’

- The first DP that the probe interacts with (2SG) satisfies it

\[\Rightarrow \text{no feature gluttony} \]

\[\pi \text{-Agree} \]

\[
\begin{align*}
[T & \left[\begin{array}{c}
\text{uPERS} \\
\text{uPART}
\end{array} \right] \rightarrow [1] \right]_\pi \\
& \triangleleft \left[\begin{array}{c}
\text{uNUM} \\
\text{uPL}
\end{array} \right] #
\end{align*}
\]

\[\text{Nongluttonous } \pi \text{-probe} \]

\[\pi = \left\{ \left[\begin{array}{c}
\text{PERS} \\
\text{PART} \\
\text{ADDR}
\end{array} \right] [1] \right\} \rightarrow \text{VI: bist (2SG)} \]
(9) *? Martin ist du. * 3 > 2
Martin.nom be.3sg you.nom

This structure gives rise to double agreement:

- upers agrees with the higher 3 SG DP, but the probe is not satisfied yet, and upart agrees with the lower 2SG DP

⇒ feature gluttony
The feature bundles of the two DPs are copied over onto π, leading to a problem of morphological realization:

A gluttonous π-probe:

$\pi = \left\{ \begin{array}{c}
[PERS]_1, \\
\begin{array}{c}
\text{PART} \\
\text{ADDR}
\end{array}_2
\end{array} \right\} \implies \text{CONFLICT}$

- Two person bundles have conflicting VI demands, and only a single VI may be inserted into T.
 - Vocabulary insertion is unable to pick a VI for this probe, leading to *ineffability*.

What is the same:

- There is a probe (Voice) that can agree with several DPs at the same time, creating a gluttonous configuration.

What is different:

- There is a special morpheme (inverse marker) that can spell-out Feature Gluttony in Passamaquoddy.
 ⇒ *no ungrammaticality arises*

- Position of the probe: the probe is not above the two DPs, but is *sandwiched between the two DPs*. Voice first looks down to interact with the object, and then (if still unsatisfied) — up to interact with the subject.
 ⇒ *object agreement in the absence of FG*

- What the probe is searching for: Voice probe in Passamaquoddy is searching for *an obviative non-participant DP*.

Tanya Bondarenko (MIT) tbond@mit.edu
Analyzing Passamaquoddy’s direct/inverse agreement

Assumptions about feature geometry:

\[
\phi = \frac{\pi}{p.pc/a.pc/r.pc/\ldots}/s.pc/p.pc/k.pc/r.pc/a.pc/d.pc/d.pc/r.pc/n.pc/o.pc/n.pc-/p.pc/a.pc/r.pc/t.pc/o.pc/b.pc/v.pc/n.pc/o.pc/n.pc-/o.pc/b.pc/v.pc/s.pc/g.pc/p.pc/l.pc/p.pc\]

(10) Inverse marker

\[
oku / oq \Rightarrow \{ \{\pi\}, \{\pi\}\}
\]

an underspecified portmanteau that occurs when the probe has agreed with two DPs and created a feature gluttony

Assumptions about the Voice probe:

(11) Independent Probe

\[
\pi \quad \ quad
Direct in Independent: $\text{PART} + \text{PART}$, $\{\text{PART}, 3\}$, and $\{3,4\}$ combinations. Among the features the Probe is searching for, the features of the subject are a subset of the features of the object.

(13) **Direct in $\{\text{PART} + \text{PART}\}$**

\[
\begin{array}{c}
\text{VoiceP} \\
\text{DP}_1 \\
\pi \\
\text{PART} \\
\text{SPKR/ADDR} \\
\text{Voice':} \\
\text{Voice:} \{\phi_2\} \\
\text{VP} \\
\sqrt{\pi} \\
\text{V} \\
\text{DP}_2 \\
\hat{\pi} \\
\text{PART} \\
\text{SPKR/ADDR} \\
\text{NON-PART} \\
\text{OBV}
\end{array}
\]
(14) **Direct in \{\textsc{part}, 3\}**

\[
\begin{align*}
\text{VoiceP} \\
\text{DP}_1 & \quad \text{Voice'} \\
\pi & \quad \text{Voice: } \{\phi_2\} \\
\text{PART} & \quad \text{VP} \\
\text{SPKR/ADDR} & \quad \text{V} \quad \text{DP}_2 \\
\text{π} & \quad \text{NON-PART} \quad \text{OBV} \\
\text{π} & \quad \text{NON-PART} \quad \text{PROX}
\end{align*}
\]
In all of these cases the Voice probe only enters into Agree with the object. Hence \textit{direct} = \textit{object agreement}.
Inverse in Independent \{3, \text{PART}\} combinations and \{4,3\}. Among the features the Probe is searching for, the features of the object are a subset of the features of the subject.

(16) Inverse in \{3, \text{PART}\}, Step 1

```
VoiceP

  DP1
    \pi
    NON-PART
    PROX

  Voice': Voice: \{\phi_2\}
    \pi
    NON-PART
    OBV

  VP
    \sqrt{\pi}
    V
    DP2

    \pi
    PART
    SPKR/ADDR
```
(17) **Inverse in \{3, \textsc{part}\}, Step 2**

VoiceP

- \(\text{DP}_1\)
 - \(\pi\)
 - NON-PART
 - PROX

- Voice: \(\{\phi_2, \phi_1\}\)

Voice’

- VP
 - V
 - \(\text{DP}_2\)

- \(\pi\)
- NON-PART
- OBV

- PART
- SPKR/ADDR
(18) Inverse in \{4, 3\}, Step 1

\[
\begin{array}{c}
\text{VoiceP} \\
\quad \begin{array}{c}
\text{DP}_1 \\
\quad \begin{array}{c}
\pi \\
\text{NON-PART} \\
\text{OBV}
\end{array}
\end{array}
\end{array}
\quad \begin{array}{c}
\text{Voice':} \\
\quad \begin{array}{c}
\text{Voice:} \{\phi_2\} \\
\quad \begin{array}{c}
\checkmark \pi \\
\text{NON-PART} \\
\text{OBV}
\end{array}
\end{array}
\end{array}
\quad \begin{array}{c}
\text{VP} \\
\quad \begin{array}{c}
\checkmark \pi \\
\text{NON-PART} \\
\text{OBV}
\end{array}
\end{array}
\quad \begin{array}{c}
\text{VP} \\
\quad \begin{array}{c}
\checkmark \pi \\
\text{NON-PART} \\
\text{OBV}
\end{array}
\end{array}
\quad \begin{array}{c}
\text{DP}_2 \\
\quad \begin{array}{c}
\text{π} \\
\text{NON-PART} \\
\text{PROX}
\end{array}
\end{array}
\end{array}
\]
Inverse in \{4, 3\}, Step 2

\[
\begin{align*}
\text{VoiceP} & \\
\text{DP}_1 & \quad \text{Voice'} \\
\pi & \\
\text{NON-PART} & \\
\text{OBV} & \\
\text{Voice: } \{ \phi_2, \phi_1 \} & \text{VP} \\
\checkmark \pi & \\
\checkmark \text{NON-PART} & \\
\checkmark \text{OBV} & \text{V} \ 	ext{DP}_2 \\
\pi & \text{NON-PART} \\
\text{PROX} &
\end{align*}
\]
The Conjunct is different from Independent only in that proximate 3rd person DPs and part DPs become equally ranked.

(20) **Direct in \{part, 3\}**

```
VoiceP
   \[\pi\]
   PART
   SPKR/ADDR

DP1

Voice'
   Voice: \{\phi_2\}
   VP
   V
   \[\sqrt{\pi}\]
   V
   OBV

\[\pi\]
   \[\pi\]
   \[\pi\]
   NON-PART
   PROX
```
(21) **Direct in \{3, \textsc{Part}\}**

Removing the \textsc{non-part} segment from the probe results in equality of participant and proximate non-participant DPs: both kinds of DPs can satisfy π segment, neither can satisfy obv.
An independently motivated mechanism of creating hierarchy effects—Feature Gluttony (Coon & Keine 2020)—can account for direct/inverse agreement in Passamaquoddy.

⇒ there is no need for hierarchies as independent objects
⇒ there is no need for an Algonquian-specific impoverishment rule (Oxford 2019)

The departures we’ve made are independently expected parameters of variation:

- the placement of the probe (*Voice vs T*);
- the features the probe searches for (*non-participant obviatives vs participants*)
Some open questions:

- How should variation across Algonquian languages in direct/inverse marking be derived?
- How can we derive the complementary distribution of inverse markers and portmanteaus in the Conjunct order?
- Passamaquoddy has another hierarchy effect that has to do with disruptability of portmanteaus in Conjunct. Can this be accounted for by FG as well?
- What are the limits of the FG-approach to hierarchy effects? What hierarchy effects can it *not* derive?
Thank you for your attention!
Appendix: Agreement patterns (Independent)

<table>
<thead>
<tr>
<th>PART + PART</th>
<th>Form</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>{1, 2}</code></td>
<td>k-tokom-\textit{ol}</td>
<td>I hit you (Sg).</td>
</tr>
<tr>
<td><code>{11, 2}</code></td>
<td>k-tokom-\textit{ol}-pon</td>
<td>We (excl.) hit you (Sg).</td>
</tr>
<tr>
<td><code>{1, 22}</code></td>
<td>k-tokom-\textit{ol}-pa</td>
<td>I hit you (Pl).</td>
</tr>
<tr>
<td><code>{11, 22}</code></td>
<td>k-tokom-\textit{ol}-pon</td>
<td>We (excl.) hit you (Pl).</td>
</tr>
<tr>
<td><code>{2, 1}</code></td>
<td>k-tokom-\textit{i}</td>
<td>You (Sg) hit me.</td>
</tr>
<tr>
<td><code>{2, 11}</code></td>
<td>k-tokom-\textit{i}-pon</td>
<td>You (Sg) hit us (excl).</td>
</tr>
<tr>
<td><code>{22, 1}</code></td>
<td>k-tokom-\textit{i}-pa</td>
<td>You (Pl) hit me.</td>
</tr>
<tr>
<td><code>{22, 11}</code></td>
<td>k-tokom-\textit{i}-pon</td>
<td>You (Pl) hit us (excl).</td>
</tr>
</tbody>
</table>

Table: Direct in Independent \texttt{PART} & \texttt{PART} configurations
Appendix: Agreement patterns (Independent)

<table>
<thead>
<tr>
<th>{\textsc{Part}, 3}</th>
<th>Form</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1, 3}</td>
<td>n-tokom-a</td>
<td>I hit her / him.</td>
</tr>
<tr>
<td>{11, 3}</td>
<td>n-tokom-a-n</td>
<td>We (excl.) hit her / him.</td>
</tr>
<tr>
<td>{1, 33}</td>
<td>n-tokom-a-k</td>
<td>I hit them.</td>
</tr>
<tr>
<td>{11, 33}</td>
<td>n-tokom-a-nnu-k</td>
<td>We (excl.) hit them.</td>
</tr>
<tr>
<td>{12, 3}</td>
<td>k-tokom-a-n</td>
<td>We (excl.) hit her / him.</td>
</tr>
<tr>
<td>{12, 33}</td>
<td>k-tokom-a-nnu-k</td>
<td>We (incl.) hit them.</td>
</tr>
<tr>
<td>{2, 3}</td>
<td>k-tokom-a</td>
<td>You (Sg) hit her / him.</td>
</tr>
<tr>
<td>{22, 3}</td>
<td>k-tokom-a-wa</td>
<td>You (Pl) hit her / him.</td>
</tr>
<tr>
<td>{2, 33}</td>
<td>k-tokom-a-k</td>
<td>You (Sg) hit them.</td>
</tr>
<tr>
<td>{22, 33}</td>
<td>k-tokom-a-wa-k</td>
<td>You (Pl) hit them.</td>
</tr>
</tbody>
</table>

\textbf{Table:} Direct in Independent \{\textsc{Part}, 3\} configurations

Tanya Bondarenko (MIT) tbond@mit.edu
Appendix: Agreement patterns (Independent)

<table>
<thead>
<tr>
<th>{3, 4}</th>
<th>Form</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>{3, 4}</td>
<td>’-tokom-a-l</td>
<td>(S)he (prox.) hits her / him (obv.).</td>
</tr>
<tr>
<td>{33, 4}</td>
<td>’-tokom-a-wa-l</td>
<td>They (prox.) hit her / him.</td>
</tr>
<tr>
<td>{3, 44}</td>
<td>’-tokom-a</td>
<td>(S)he (prox.) hits them (obv.).</td>
</tr>
<tr>
<td>{33, 44}</td>
<td>’-tokom-a-wa</td>
<td>They (prox.) hit them (obv.).</td>
</tr>
</tbody>
</table>

Table: Direct in Independent {3, 4} Configurations

<table>
<thead>
<tr>
<th>{4, 3}</th>
<th>Form</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>{4, 3}</td>
<td>’-tokom-oku-l</td>
<td>(S)he (obv.) hits her / him (prox.).</td>
</tr>
<tr>
<td>{4, 33}</td>
<td>’-tokom-oku-wa-l</td>
<td>(S)he (obv.) hits them (prox.).</td>
</tr>
<tr>
<td>{44, 3}</td>
<td>’-tokom-oku</td>
<td>They (obv.) hit her / him (prox.).</td>
</tr>
<tr>
<td>{44, 33}</td>
<td>’-tokom-oku-wa</td>
<td>They (obv.) hit them (prox.).</td>
</tr>
</tbody>
</table>

Table: Inverse in Independent {4, 3} Configurations
Appendix: Agreement patterns (Independent)

<table>
<thead>
<tr>
<th>{3, part}</th>
<th>Form</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>{3, 1}</td>
<td>n-tokom-oq</td>
<td>(S)he hits me.</td>
</tr>
<tr>
<td>{3, 11}</td>
<td>n-tokom-oku-n</td>
<td>(S)he hits us (excl.)</td>
</tr>
<tr>
<td>{33, 1}</td>
<td>n-tokom-oku-k</td>
<td>They hit me.</td>
</tr>
<tr>
<td>{33, 11}</td>
<td>n-tokom-oku-nnu-k</td>
<td>They hit us (excl.)</td>
</tr>
<tr>
<td>{3, 12}</td>
<td>k-tokom-oku-n</td>
<td>(S)he hits us (incl.).</td>
</tr>
<tr>
<td>{33, 12}</td>
<td>k-tokom-oku-nnu-k</td>
<td>They hit us (incl.).</td>
</tr>
<tr>
<td>{3, 2}</td>
<td>k-tokom-oq</td>
<td>(S)he hits you (Sg.).</td>
</tr>
<tr>
<td>{3, 22}</td>
<td>k-tokom-oku-wa</td>
<td>(S)he hits you (Pl.).</td>
</tr>
<tr>
<td>{33, 2}</td>
<td>k-tokom-oku-k</td>
<td>They hit you (Sg.).</td>
</tr>
<tr>
<td>{33, 22}</td>
<td>k-tokom-oku-wa-k</td>
<td>They hit you (Pl.).</td>
</tr>
</tbody>
</table>

Table: Inverse in Independent {3, part} Configurations